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The proper orthogonal decomposition (POD) is widely used to derive low-dimensional
models of large and complex systems. One of the main drawback of this method, however,
is that it is based on reference data. When they are obtained for one single set of parameter
values, the resulting model can reproduce the reference dynamics very accurately but gen-
erally lack of robustness away from the reference state. It is therefore crucial to enlarge the
validity range of these models beyond the parameter values for which they were derived.
This paper presents two strategies based on shape sensitivity analysis to partially address
this limitation of the POD for parameters that define the geometry of the problem at hand
(design or shape parameters.) We first detail the methodology to compute both the POD
modes and their Lagrangian sensitivities with respect to shape parameters. From them,
we derive improved reduced-order bases to approximate a class of solutions over a range
of parameter values. Secondly, we demonstrate the efficiency and limitations of these
approaches on two typical flow problems: (1) the one-dimensional Burgers’ equation;
(2) the two-dimensional flows past a square cylinder over a range of incidence angles.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The proper orthogonal decomposition (POD) [1] has emerged as a powerful tool in fluid mechanics. Given a set of flow
data, it extracts the most energetic global functions (modes) that can be used to characterize and analyze flows. Given
the optimality of the POD modes in terms of energy representation, they are also good candidates to build low-dimensional
models of the system dynamics using the Galerkin method (see e.g. [2–4] for more details on the POD). Flow modeling by
POD-Galerkin systems has been the most popular approach in the literature (see e.g. [5–9]) though there is a number of other
ways to generate global functions.

The accuracy of reduced-order models crucially depends on how good a reduced basis is to represent the targeted set of
solutions. One of the issues that arises is to what extent bases obtained by decomposing flow data at one given set of param-
eter values (henceforth the reference or baseline state) can account for solutions over a wide range of parameter values. In-
deed, the bases obtained by empirical selection methods are shown to be optimal (in a given sense) for the particular set of
flow snapshots but are generally not well-suited to represent any solution of the PDE at hand (unlike polynomial or spectral
bases used in finite-element for example). Thus, regardless of the truncation taken in the full-basis, the reduced basis ob-
. All rights reserved.
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tained may not be able to accurately represent a range of solutions in the parameter space leading to inaccurate ROM. This
drawback was reported in the literature for laminar flows over obstacles considering a range of Reynolds numbers [5].

In our previous studies [10,11], we have used sensitivity analysis in the basis selection process to enlarge the set of solu-
tions that can be accurately represented in the parameter space, which in turn allows for more robust ROM. The proposed
approaches all rely on the sensitivities of the POD modes (their derivatives with respect to parameters). They are derived by
differentiating the eigenvalue problem for the POD modes. This yields a set of equations for the eigenvalue and eigenvector
sensitivities that require flow sensitivity data. The latter have been obtained by the continuous sensitivity equation method
(SEM) [12–14]. Using the POD mode sensitivities, we have examined two different approaches to derive bases that are ade-
quate for a range of parameter values. The first one extrapolates the POD modes in the parameter space to the corresponding
state to be modeled. It relies on the assumption that the eigenfunctions have a linear dependency on the parameters which
can only be validated locally. The second one expands the reduced basis by adding the sensitivity of the original modes. The
underlying idea behind this approach is that the POD mode sensitivities span a different subspace than the one generated by
the POD eigenfunctions. Furthermore, this subspace is deemed appropriate to represent changes in solutions with parameter
variations. In this previous work, the two-dimensional flow past a cylinder was considered since it has been widely used in
the literature for assessing the accuracy of ROM [5,9,8,6,15]. Furthermore, the fluid viscosity was used as a parameter in the
system and we looked at the ability of ROM trained at a given Reynolds number ðRe ¼ 100Þ to produce solutions over a range
of Reynolds numbers ðRe 2 ½60;150�Þ. It was shown that the modified bases have both led to an improvement in modeling
the flow solutions as one moves in the parameter space. Relatively close to the baseline, the extrapolated and expanded ap-
proaches both achieve very good predictions so that using the extrapolated-basis constitutes a better strategy since it does
not increase the dimension of the dynamical system while the expanded approach essentially doubles it. However, when
considering larger parameter changes, the expanded approach was demonstrated to provide a much more robust strategy.
In particular, it was shown that it converges to a stable limit cycle that is a fairly good approximation of the attractor of the
full-order simulation even for large parameter changes. This previous study was limited to problems with fixed geometries
by considering only value parameters. The present work aims at extending the proposed approaches to shape (or design)
parameters (parameters that define the geometry of the fluid domain).

There is a paucity of work in the literature on reduced-order modeling for problems with parameter dependent geome-
tries. Anttonen et al. [16] have looked at the influence of deforming grids on POD-based reduced-order approximations. Sim-
ilarly to what is observed for value parameters (see e.g. [5,11]), they show that ROMs built at a given set of parameters lose
accuracy when applied at a different state. Following a classical idea in reduced-order modeling to increase robustness of
models (see e.g. [17,6]), they have applied the POD technique to extract a basis from a mixed database that contains snap-
shots for several different parameter values. They report that the resulting single model is unstable. To circumvent this issue,
they have used several ROMs trained for various sets of parameters and switched between them when moving in the shape
parameter space. They show that this approach allows for more accurate predictions. However, the cost of the basis selection
step is significantly increased since full-order data are required for several parameter values that cover the entire range to be
approximated by ROM. This is the most severe limitation because the cost of the reduced-order approach rises dramatically
as full-order data are expensive and demanding to obtain. Note that, a similar conclusion holds for value parameters. This
limitation can be addressed by building models at each desired state by interpolating POD basis vectors in the parameter
space (see e.g. [18,19].) The methodologies presented in this article only requires data at one single state but we use both
zero- and first-order information from sensitivity analysis. Note that sensitivity data can be obtained for a fraction of the
cost of flow data. We first consider the simple one-dimensional Burgers’ equation to introduce and illustrate the proposed
methodology to address parameter dependent geometries in reduced-order modeling. Secondly, we investigate the two-
dimensional case of laminar flows over a square cylinder in incidence placed in a channel. The shape parameter describes
the angular orientation of the cylinder.

The paper is organized as follows; Section 2 deals with the formulation for the direct numerical simulations (DNS) that
compute flow and sensitivity data. We use a Lagrangian approach to easily derive the continuous Lagrangian sensitivity
equations. For both the one-dimensional Burgers’ equation and the two-dimensional Navier–Stokes equations, we derive
the weak forms for the primal and sensitivity problems and we introduce the configurations, parameters and appropriate
mappings. In Section 3, we first describe the procedure to calculate the POD modes and their Lagrangian sensitivities with
respect to shape parameters. Secondly, we present reduced-order models for the Burgers’ equation and the Navier–Stokes
equations. We also introduce the bases used in these models which are derived using the POD modes and their sensitivities.
Finally, Sections 4 and 5 provide extensive numerical results on these low-dimensional approximations and we discuss their
ability to predict solutions on parameter dependent geometries.
2. Formulation for the direct numerical simulation

Direct numerical simulation is used to produce accurate full-order data that will be decomposed to generate the spatial
basis functions that are employed to define reduced-order approximations. In this study, we are interested in computing
solutions to the PDE and their Lagrangian derivatives with respect to shape parameters. This will allow for generating both
the POD basis functions and their sensitivities to the design parameters of the problem geometry (known as shape or geo-
metric sensitivities).
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There is a wealth of publication on sensitivity analysis that presents the different methodologies to numerically compute
shape sensitivities and the interested reader is referred to [13,20] for a broader discussion. We succinctly present here the
most popular approaches to compute flow sensitivities:

(1) Finite-differences of flow solutions: it is a straightforward approach that only requires evaluations from the flow solver
and thus almost no additional development. However, this option is highly costly because the flow solutions must be
computed for two or more values of each parameter (see e.g. [21–23].)

(2) Complex variable method: it is similar to the finite-difference idea with the exception that a complex perturbation is
taken. The first derivatives are obtained by evaluating the imaginary part of the variable at the perturbed state. Thus,
the calculation is not affected by round-off errors unlike with finite-differences. However, it does not offer a saving of
resources when compared to using finite-differences since the problem must be solved at a perturbed state for each
parameter (see e.g. [24–26].)

(3) Sensitivity equation method (SEM): The SEMs numerically solve a set of PDEs for the sensitivities. These equations are
obtained by differentiation of the (discrete or continuous) flow equations and are thus always linear. Consequently,
the SEMs always compute a flow sensitivity for a fraction of the cost of computing the flow making these methodol-
ogies very attractive. The differences between SEMs depend on the order of the three operations: mapping, differen-
tiation and discretization [20]. In the continuous sensitivity equation (CSE) approach, the governing equations are first
differentiated and then discretized, whereas in the discrete sensitivity equation (DSE) approach, discretization is per-
formed prior to differentiation. One of the main advantages of the DSE approach is that it can be handled through
automatic differentiation. It is a powerful approach because the code for calculating sensitivities is almost automat-
ically generated from the code for computing dependent variables (see e.g. [27–29]). However, the CSE method offers a
number of advantages over discrete sensitivity algorithms that have been extensively discussed in the literature
[30,20]. Among them, we adopt the CSE method here for the two following reasons : First, in the case of shape param-
eters, the CSE method avoids the delicate issue of evaluating mesh sensitivities. In the present case, because adaptive
grids are used, mesh sensitivities do not even exist making the use of DSE method ill-suited. Secondly, the CSE method
avoids the differentiation of non-differentiable terms arising from discretization schemes such as limiters, blending
functions or stabilization terms.

The general framework and setting of our approach is first introduced in Section 2.1. Then, the methodology is applied
and detailed for two different flow problems. First, we consider the one-dimensional Burgers’ equation in Section 2.2. Sec-
ondly, we address the two-dimensional Navier–Stokes equations in Section 2.3.
2.1. General setting

Let us consider a physical domain Xa which depends on a shape parameter a. For each value of a, the physical domain
under consideration is changed. In practice, the changes in the domain come from the modification of the boundaries of
Xa through changes in the parameter a. The classical approach in numerical simulation is to address each value of a sepa-
rately by considering the corresponding boundaries of Xa and meshing the inside domain defined from them. Here, we as-
sume that there exists a mapping va that maps each material point in Xa to a reference domain X0 as illustrated in Fig. 1:
va : Xa ! X0

xðaÞ# vaðxðaÞ;aÞ ¼ n: ð1Þ
In this setting, the coordinates of a material point in Xa; x, depend on a while its coordinates in X0 do not. In practice, since
the only relevant physical information on how the domain is affected by changes in a is how the boundaries of Xa are altered,
there are numerous ways to define the mapping va. In this study, the dependency of the boundaries of Xa on a will be simple
enough so that their deformations will be limited to rigid body motion. Furthermore, we assume that an expression of
vaðxðaÞ;aÞ is available (more than one hold since the mapping is not uniquely defined). This means that the explicit depen-
dency of va with respect to a is analytically known. Once a mapping has been chosen, it uniquely maps each point in Xa to a
point in X0 so that the inverse of this one-to-one onto function exists. It will be denoted Ga in what follows:
ΩΩ 0α

Χ

G

α

α
x ξ

Fig. 1. Mapping from the physical domain to the reference domain.
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Ga : X0 ! Xa

n # Gaðn;aÞ ¼ xðaÞ: ð2Þ
Note that some regularity conditions on va may also be required to properly define the modified problem once expressed in
the coordinate system associated to X0 as will be shown for the examples considered in this study.

For more complex geometry and general parameter dependency in practice, analytical or semi-analytical expressions of
the mapping will not be available. To address these problems, it is necessary to resort to techniques where the mapping is
the solution to an additional problem that is solved numerically along with the PDE at hand. To deal with the deformations of
both boundaries and domain, there are two widely used methodologies in the literature. The spring analogy technique con-
sidered the existing grid domain as a pseudo-structural system which is governed by the equations of dynamic equilibrium
[31,32]. The pseudo-solid approach introduces structural-like equations to manage the deformation of the domain at the
continuum level [33,34]. Note that these approaches introduce numerical errors in the definition of the mapping and its
gradient.

2.2. One-dimensional Burgers’ equation

2.2.1. Primal problem
We first consider the one-dimensional Burgers’ equation over the domain Xa ¼ ½0;Xm�:
u;t þ uu;x � �u;xx ¼ 0 with uðx;0Þ ¼
1 x < Xm

2

0 x P Xm
2 :

(
ð3Þ
and zero Dirichlet boundary conditions at both ends. The mapping of the solution u on X0 will be denoted as û in what fol-
lows. The values of the solution function are unchanged through the mapping but the distances between material points are
since the domains are different. Thus, the gradients with respect to x and n are different. It is straightforward to show that the
following relations hold:
u;x ¼ û;n va
;x

� �
; ð4Þ

u;xx ¼ û;n va
;xx

� �
þ û;nn va

;x

� �2
: ð5Þ
Hence, the mapped problem defined on the reference domain is:
û;t þ ûû;n va
;x

� �
� � û;nn va

;x

� �2
þ û;n va

;xx

� �� �
¼ 0 with ûðn;0Þ ¼

1 n < va Xm
2

� �
0 n P va Xm

2

� �
:

(
ð6Þ
2.2.2. Sensitivity problem
In this study, sensitivity solutions are obtained by numerically solving the continuous equations for the sensitivity prob-

lem. The continuous sensitivity equations are derived formally by implicit differentiation of the primal equations with re-
spect to an arbitrary parameter a. Thus, we treat the variable u as a function of both space/time and parameter a. This
dependency is denoted by u ¼ uðx; t;aÞ. For a shape parameter, the coordinates of points in the physical domain Xa; x, also
depend on a. The Lagrangian sensitivity is defined as the total (or material) derivative:
Su ¼
Du
Da

: ð7Þ
Now, recalling that the coordinates of material points in the reference domain do not depend on a, we take the total differ-
entiation of (6) to yield the continuous Lagrangian sensitivity equation on X0:
Sû;t þ Sûû;n þ ûSû;n

� 	
va
;x

� �
þ ûû;n½ �S va

;x

� �
�� Sû;nn va

;x

� �2
þ Sû;n va

;xx

� �
þ 2û;nn va

;x

� �
S va

;x

� �
þ û;nS va

;xx

� �� �
¼ 0

with Sûðn;0Þ ¼ 0: ð8Þ
where S va
;x

� �
is the sensitivity of the gradient of the mapping. Once, the Lagrangian sensitivity Sû has been computed on

X0, it can be mapped back on Xa yielding Su. Note that the boundary conditions for the Lagrangian sensitivity are also
homogeneous since the Dirichlet boundary condition for u is unchanged at all material boundary points by parameter
changes.

2.2.3. Weak forms of the problems
For both the DNS and the ROM simulations of this problem, the weak form of (6) is formed by a Galerkin projection on a

set of suitable test functions ŵ that satisfy the homogeneous Dirichlet boundary conditions at the boundary C0 of X0. Here,

we assume that the mapping is regular enough so that va
;x

� ��1
¼ Ga

;n is well-posed. Then, integration by parts of the term
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involving �û;nnðva
;xÞ

2 yields the following weak form of (6); seek û 2 X ¼ H1ðX0Þ such that 8ŵ 2 X0 ¼ ff̂ 2 H1ðX0Þ j f̂ ¼
0 on C0g:
Z

X0

ŵ û;t þ ûû;n va
;x

� �
þ �û;n va

;xx

� �h i
þ ŵ;n �û;n va

;x

� �2
� �

dX0 ¼ 0: ð9Þ
Similar treatments to (8) with integration by parts of the terms involving Sû;nn and û;nn yield the sensitivity problem in the
weak sense; seek Sû 2 X such that 8ŵ 2 X0:
Z

X0

ŵ Sû;t þ Sûû;n þ ûSû;n

� �
va
;x

� �
þ ûû;nð ÞS va

;x

� �
þ � û;nS va

;xx

� �
þ Sû;n va

;xx

� �� �h i
þ �ŵ;n 2 û;nðva

;xÞS va
;x

� �� �
þ Sû ;n va

;x

� �2
� �

dX0 ¼ 0: ð10Þ
Eqs. (9) and (10) are discretized using P2 isoparametric finite-element and integrated in time using the explicit fourth-order
accurate Runge–Kutta scheme.

2.2.4. Parameter and mappings
For this first problem, the shape parameter a is the upper limit Xm of the segment Xa ¼ ½0;Xm�. Thus, a change in the

parameter changes the size of the physical domain. The simplest mapping that can be used is the linear transformation,
vaðx;aÞ ¼ x=a, that uniformly maps points of Xa into X0 ¼ ½0;1�. However, such a simple mapping leads to great simplifica-
tion of the previous equations (since va

;xx ¼ Sðva
;xxÞ ¼ 0) and hence does not allow for the testing of the whole formulation.

Thus, to address more complicated domain deformations, we consider in what follows a quadratic transformation that maps
Xa to X0 ¼ ½1;4� from:
va : x # vaðx;aÞ ¼ xþ a
a

� �2

; ð11Þ

Ga : n # Gaðn;aÞ ¼ a
ffiffiffi
n

p
� 1

� �
: ð12Þ
Note that the points in X0 are uniformly distributed over the segment while points are slightly clustered to the end point in
the physical domain due to the quadratic dependency of va on x. Finally, the baseline (or reference) state is chosen as
a ¼ a0 ¼ 1 which also sets the baseline solution.

2.3. Two-dimensional Navier–Stokes equations

In this section, the methodology is applied to the unsteady incompressible Navier–Stokes equations. Though the deriva-
tion of the sensitivity equations is more involved, the essence of the procedure is unchanged. However, we have found it
more convenient to take first the weak form of the primal equations, then to map them on the reference domain and differ-
entiate them with respect to the parameter to yield the sensitivity equations. Thus, compare to what has been done for the
Burgers’ equation, we switch the operation of mapping/differentiation. Though these two ways of proceeding do not lead to
the same expressions, they are equivalent. Their discrete solutions should only differ slightly due to differences in numerical
approximations.

2.3.1. Primal problem
The pointwise momentum and mass conservation laws are written as:
q
@u
@t
þ qðu � rxÞu ¼ rx � r; ð13Þ

rx � u ¼ 0; ð14Þ
where u ¼ ½u;v �T is the velocity vector and r ¼ ð�pIþ sðuÞÞ is the stress tensor, q the density, p the pressure and I the sec-
ond-order identity tensor. For Newtonian fluids, the viscous stress tensor is given by:
sðuÞ ¼ l rxuþ ðrxuÞT
� �

;

where l is the fluid dynamic viscosity. The solution of these equations are sought on a domain Xa with a boundary
Ca ¼ CD

a [ CN
a and over times t 2 T � ½0; T�. Dirichlet and homogeneous Neumann boundary conditions are imposed on

boundary segments CD
a and CN

a , respectively:
u ¼ u CD
a

� �
; ð15Þ

r � n ¼ 0 CN
a

� �
; ð16Þ
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where n is an outward unit vector normal to the boundary. The variables are initialized in time using a prescribed initial
solution.

2.3.2. Weak form of the problem
For both the DNS and the ROM simulations of these PDE, the weak form of Eqs. (13) and (14) are formed by a Galerkin

projection on a set of suitable test functions. In particular, the test functions for the momentum equation satisfy the homo-
geneous version of the Dirichlet boundary conditions Eq. (15) (i.e. w 2 X0 ¼ ff 2 ½H1ðXaÞ�2 j f ¼ 0 on CD

ag). Then, we seek
u 2 X ¼ ½H1ðXaÞ�2 and p 2 L2

0ðXaÞ such that:
Z
Xa

w � q
@u
@t
þ qðu � rxÞu

� �
dX ¼

Z
Xa

pðrx �wÞ � s : rxw dX 8 w 2 X0; ð17ÞZ
Xa

qðrx � uÞ dX ¼ 0 8 q 2 L2
0ðXaÞ: ð18Þ
These equations have been obtained by integrating by part the term involving r as classically done:
Z
Xa

ðrx � rÞ �w dX ¼
Z

Ca

ðr �wÞ � n dC�
Z

Xa

r : rxw dX ¼
Z

Ca

ðr � nÞ �w dCþ
Z

Xa

p ðrx �wÞ � s : rxw dX: ð19Þ
The integrand in the boundary integral is zero on CD
a since w 2 X0 and also on CN

a from the homogeneous Neumann boundary
condition Eq. (16). For the DNS, the test functions are finite-element interpolation functions that span ½H1ðXaÞ�2; for the ROM,
the test functions are the POD modes that span a subspace of ½H1ðXaÞ�2.

2.3.3. Sensitivity problem
To derive the Lagrangian sensitivity equations, we map Eqs. (17) and (18) from Xa to X0. It yields:
Z

X0

q
@û
@t
þ qðrnû � rxv

aÞ � û
� �

� ŵ� p̂ rnŵ : rxv
a½ � þ ŝ : rnŵ � rxv

a½ � J dX ¼ 0 8 ŵ 2 bX0; ð20ÞZ
X0

q̂ rnû : rxv
a½ � J dX ¼ 0 8 q̂ 2 L2

0ðX0Þ; ð21Þ
where bX0 ¼ f̂ 2 ½H1ðX0Þ�2 j f̂ ¼ 0 on CD
0

n o
; J is the Jacobian of the mapping (i.e. the determinant of the matrix associated to

the gradient of Ga); and ŝ ¼ l½rnû � rxv
a þ ðrxv

aÞT � ðrnûÞT � is the mapped viscous stress tensor.
Implicit total differentiation with respect to the parameter a yields a continuous weak form of the Lagrangian sensitivity

problem on the reference domain X0; seek Sû 2 X ¼ ½H1ðX0Þ�2 and Sp̂ 2 L2
0ðX0Þ such that:
Z

X0

ŵ � q
@û
@t
þ q rnû � rxv

að Þ � û
� �

� p̂ rnŵ : rxv
a½ � þ ŝ : rnŵ � rxv

a½ �
� �

DJ
Da

þ ŵ � q
@Sû

@t
þ q rnSû � rxv

a þrnû � Sðrxv
aÞð Þ � ûþ q rnû � rxv

að Þ � Sû

� ��
�Sp̂ rnŵ : rxv

a½ � � p̂ rnŵ : Sðrxv
aÞ½ � þ SðŝÞ : rnŵ � rxv

a½ � þ ŝ : rnŵ � Sðrxv
aÞ½ �



J dX ¼ 0 8 ŵ 2 bX0; ð22ÞZ
X0

q̂ rnû : rxv
a½ �f g DJ

Da
þ q̂ rnSû : rxv

a þrnû : Sðrxv
aÞ½ �f g J dX ¼ 0 8 q̂ 2 L2

0ðX0Þ; ð23Þ
where the sensitivity of the viscous stress tensor is given by:
SðŝÞ ¼ l rnSû � rxv
a þ ðrxv

aÞT � ðrnSûÞT þrnû � Sðrxv
aÞ þ ðSðrxv

aÞÞT � ðrnûÞT
h i

:

In these equations, Sðrxv
aÞ is the total derivative of the gradient of the transformation. In practice, the integrands are eval-

uated on the reference domain so that it is more convenient to only evaluate values of Ga, its gradient and its sensitivity on
X0. To do so, we make use of the fact that the mapping has been assumed to possess sufficient regularity so that :
rxv

a ¼ ðrnGaÞ�1 and thus Sðrxv
aÞ ¼ SððrnGaÞ�1Þ.

Finally, to properly and completely define the sensitivity problem, initial and boundary conditions must be defined. They
are easily derived by taking the total derivative of the flow initial and boundary conditions. We first map the boundary con-
ditions Eqs. (15) and (16) onto the boundaries of X0. From the total differentiation of the latter, one obtains the following
boundary conditions for the sensitivity:
Sû ¼ 0 CD
0

� �
; ð24Þ

� Sp̂ n̂þ SðŝÞ � n̂ ¼ 0 CN
0

� �
: ð25Þ
Flows are initialized in time by the solution of the corresponding steady problem modeled by the steady version of Eqs. (20)
and (21). Hence, the initial sensitivity condition is the solution of the steady counterpart of Eqs. (22) and (23).
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2.3.4. Configurations, parameter and mapping
This study aims at simulating two-dimensional flows over square cylinders at incidence placed in a channel. Full-order

simulations of such flows have already been performed in the literature (see e.g. [35,36]). Here, we focus on flows for which
the Reynolds number, based on the square edge length D and the inlet velocity U0, is Re ¼ qU0D=l ¼ 100. We examine con-
figurations that are classified from the angular orientation a of the cylinder with respect to a reference configuration as illus-
trated in Fig. 2 (the angular orientation of the cylinder with respect to the channel walls is denoted c). In what follows, the
baseline configuration (for which a ¼ 0) is obtained for a square cylinder at c ¼ 22:5� of incidence. The parameter space is
comprised of all angles for which a ¼ a0 � Damax with Damax ¼ 22:5� so that the configurations range from a square cylinder
at zero incidence to 45� of incidence. For this Reynolds number, regardless of the values of the shape parameter a, all flows
are reported to be two-dimensional, laminar and T-periodic in time exhibiting a Von Kármán vortex street [36,37]. The ver-
tical distance between the upper and lower channel walls defined the solid blockage ratio b [36]. We consider here H ¼ 20D
so that b ¼ D=H ¼ 5% for all configurations. A freestream condition ðu ¼ ½U0;0�TÞ is prescribed at the inlet. In such a case, it
has been shown in the study of Sohankar et al. [36] that the necessary distance for obtaining results independent of the inlet
location is about 10D. Following this direction, the inlet is located 12D away from the cylinder front edge. And, the compu-
tational domain extends 15D away from the rear cylinder edge to allow for the simulation of the transport of several vortexes
in the wake of the cylinder. At the outlet of the domain (CN), the homogeneous Neumann boundary condition is applied as
described by (16). Finally, the no-slip condition holds on the cylinder and channel walls.

The rotation of the cylinder corresponds to a rigid body rotation Ra of angle a:
Ra : x ¼
x

y

� �
#

x cos aþ y sina
�x sinaþ y cos a

� �
: ð26Þ
To address the sensitivity with respect to a of the flow over the cylinder placed in a channel, the mapping from the physical
domain to the reference domain must agree with the rigid body rotation of the cylinder walls while letting all the other
boundaries of the domain unchanged since they are unaffected by the cylinder rotation. To do so, we define a function
/̂ : X0 ! ½0;1� such that:
D/̂ ¼ 0 in X0 with /̂ðnÞ ¼
1 on Ccyl

0

0 on C0 n Ccyl
0 ;

(
ð27Þ
where Ccyl
0 represents the cylinder walls. Hence, by definition this function: (1) returns 1 on the cylinder walls and 0 on the

outer boundaries which are the channel walls, inlet and outlet; (2) smoothly varies from 1 to 0 inside the domain according
to the Laplace’s equation. To derive a suitable space transformation, the mapping is defined by weighting the rigid body rota-
tion by this function as follows:
va : x ¼
x

y

� �
#n ¼

n

g

� �
¼

x cosð/aÞ þ y sinð/aÞ
�x sinð/aÞ þ y cosð/aÞ

� �
; ð28Þ

Ga : n#x ¼ n cosð/̂aÞ � g sinð/̂aÞ
n sinð/̂aÞ þ g cosð/̂aÞ

" #
: ð29Þ
Actually, the weighting function could be used to define mappings for any rigid body motion of the cylinder, parameterized
by an arbitrary number of parameters as long as the cylinder does not go too close to the outer boundaries. This technique
has already been used in the literature to simulate free-surface flows around moving bodies [38]. Fig. 3 illustrates how the
resulting domain mapping acts in practice on a computational mesh. Once a mesh of X0 has been generated, one can solve
the flow and sensitivity equations for any configuration by selecting the appropriate value of a. Fig. 3(a) shows a close-up
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Fig. 2. Problem configuration.



view around the cylinder of such a reference mesh that we have generated by adaptive mesh refinement when solving the
steady flow and sensitivity problem for a ¼ 0. In this case, the physical domain and mesh match the reference domain and
mesh since for a ¼ 0, va is simply the identity. Fig. 3(b) shows some isolines of the weighting function /̂ on the same close-up
view. Now, if one wants to compute the flow and sensitivity solutions using the same reference mesh but for other inci-
dences, the actual physical mesh would be different. They are illustrated in Fig. 3(c) and (d) for c ¼ 45� and c ¼ 0�, respec-
tively. These meshes are composed of P2 finite-elements for the flow and sensitivity velocity. Although not illustrated in
Fig. 3, note that for the physical meshes the mid-edge nodes are not located at the mid-section of the line segment bounded
by two vertexes. Thus, solving Eqs. (17) and (18) on these meshes, as will do for reduced-order models, requires P2-isopara-
metric elements.

Finally, it is worth noting that the mapping va defined by (28) is semi-analytical in the sense that its dependency on a is
analytically known but its dependency on the space coordinates is not since / depends implicitly on them.
3. Reduced-order models

3.1. The proper orthogonal decomposition

An important step in reduced-order modeling is to find a suitable set of spatial functions to represent uðx; tÞ 2 X for t 2 T .
The POD provides such elements by decomposing input data that are comprised of flow solutions from full-order simula-
tions. The main feature of the method is that it converges optimally fast in quadratic mean (i.e. in energy when using the
L2-inner product) compared with any other expansion. That is, the first q POD eigenfunctions capture more kinetic energy
in the data on the average than any other set of q orthonormal spatial functions.

We assume that the input collection consists of linearly independent finite-element snapshots, uhðx; tiÞ, at time instants
ti 2 T for i ¼ 1; . . . ;m and calculated on a mesh with n nodes for a d-dimensional geometry. They are stored in the snapshot
data matrix Y 2 Rnd�m. Each column of Y represents a single discrete velocity snapshot of the input ensemble. The matrix has
full rank due to the linear independence assumption on the snapshots. From the finite-element discretization, the L2-inner
product is computed by the M-inner product: ðw;/ÞX ¼ wTM/ where M2 Rdn�dn is the symmetric, positive definite, (gen-
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erally sparse) finite-element mass matrix. Note that we are using here / for both the finite-element approximation as well as
the vector that stores the coefficients of its expansion in the finite-element basis.

The so-called method of snapshots introduced by Sirovich [3] consists in finding the temporal eigenfunctions rather than
the spatial eigenfunctions (see [4] for details on the relation between these two types of eigenfunctions) because it leads to a
much smaller eigenvalue problem:
YT MY V ¼ VK with U ¼ YVK�1=2; ð30Þ
where the matrix U 2 Rdn�m collects the finite-element coefficients of the discrete spatial eigenfunctions while V 2 Rm�m col-
lects the temporal eigenfunctions and K ¼ diagðk1; . . . ; kmÞ. Each column of U represents a single POD spatial vector /j and
they are ordered such that ki P kiþ1. Due to the assumptions on the FE snapshots, the matrix B ¼ YT MY 2 Rm�m is symmetric,
positive definite so that the spectral theorem states that (30) exists and the eigenfunctions form a complete real orthonormal
set associated to positive eigenvalues. From the physical point of view, kk measures the kinetic energy of the data captured
by mode k on average over the time interval T :
kk ¼
VT

k BVk

VT
k Vk

¼ /T
kðYYT MÞ/k

/T
k/k

; ð31Þ
where Vk denotes the kth column vector of V.
The POD basis of dimension q is defined as a set of q dominant eigenfunctions. Thus, the subspace P ¼ spanf/jg

q
j¼1 is the

best approximation of dimension q of spanfuhðx; tiÞgm
i¼1 in terms of kinetic energy representation. For details the reader is

referred to [3,2,4].

3.2. POD mode sensitivity

This section aims at deriving the sensitivity of the discrete POD modes with respect to a generic shape parameter a. They
will be used to build bases for reduced-order modeling. Sensitivity analysis of eigenvalue problems has been the subject of
several studies in the literature. The methodology for computing the sensitivity of eigenvalues and eigenvectors of multiplic-
ity one is reported in [39,40]. The treatment of general multiple eigenvalues has been examined in [41] and, in the context of
structural vibration problems, in [42].

For the present discussion, we consider matrices with simple eigenvalues and we assume that the multiplicity of the
eigenvalues is preserved through a change in the parameter.

We start with Eq. (30); then Vk is the solution of the eigenvalue problem:
BVk ¼ kkVk: ð32Þ
We assume that the components of the B; V and K matrices are smooth functions of the parameter a so that each eigenvalue
problem can be differentiated with respect to a. Before going any further, we emphasize that there is a number of situations
for which this is not true. Indeed, this assumption requires that data snapshots, eigenfunctions and eigenvalues are smooth
functions of the parameter in the neighborhood of the current state. As an example, for the case of the flow past a cylinder,
the POD modes do not undergo a smooth transition at the first Hopf bifurcation so that the mode sensitivities (with respect
to the Reynolds number) are not defined at this Reynolds number. This is a limitation of this method.

For the sake of compactness, the total derivative ðD:=DaÞ of any matrix or vector is denoted using the superscript ðaÞ. Thus,
implicit differentiation of Eq. (32) with respect to a leads to:
ðB� kkIÞVa
k ¼ �ðB

a � ka
k IÞVk: ð33Þ
Hence, the sensitivity of the vector Vk is solution to the linear system (33) which has solutions only if the right-hand-side
vector belongs to the range of B� kkI. Thus, given that the system matrix is symmetric, Vk must be orthogonal to all the ele-
ments of kerðB� kkIÞ which is generated by Vk. In other words:
VT
kðB

a � ka
k IÞVk ¼ 0: ð34Þ
Hence, the sensitivity of the eigenvalues is obtained through:
ka
k ¼ VT

k BaVk: ð35Þ
Thus, solutions to system (33) are completely characterized. Note that the same result is obtained by differentiating (31) that
expresses k as the average kinetic energy captured by its eigenvector. We found one particular solution to (33), noted sk, by
seeking the minimum norm least-squares solution. Since kk is simple, sk þ cVk for all c 2 R is the general expression for the
solutions to (33). To determine the particular solution that corresponds to the sensitivity of Vk, an additional condition must
apply for finding the c that gives Vk. It naturally comes from the normalization condition VT

k Vk ¼ 1 which already made Vk

unique (up to its sign). Differentiating the normalization condition gives VT
k Va

k ¼ 0 and thus we find:
Va
k ¼ sk � VT

k sk

� �
Vk: ð36Þ
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Note that sk and thus Va
k always points in the appropriate direction for any choice in the sign of Vk.

Once the sensitivity of the matrices V and K are determined, the sensitivity of the POD spatial modes are easily computed
by differentiating U ¼ YVK�1=2:
Ua ¼ YaVK�1=2 þ YVaK�1=2 þ YVðK�1=2Þa

¼ YaVK�1=2 þ YVaK�1=2 � 1
2

YVðK�1=2KaK�1Þ ð37Þ

¼ YaVK�1=2 þ YVaK�1=2 � 1
2

UKaK�1:
Note that the procedure to compute the sensitivity of the POD modes is exactly the same as the one used for value param-
eters in [10,11]. However, when performing the differentiation of the matrix B an additional term appears for the case of
shape parameters:
Ba ¼ ðYaÞT MY þ YT MYa þ YT MaY : ð38Þ
Indeed, in the sensitivity of the data, the term YT MaY accounts for the mesh deformation that is due to the deformation of the
physical domain through parameter changes. The sensitivity of the mass matrix is easily obtained from:
Ma
ij ¼

D
Da

Z
Xa

uiuj dX ¼ D
Da

Z
X0

ûiûj J dX

¼
Z

X0

ûiûj
DJ
Da

dX ¼
Z

Xa

uiuj
DJ
Da

J�1 dX; ð39Þ
where fujg
n
j¼1 denote the finite-element interpolation functions.

3.3. Reduced-order modeling

Reduced-order modeling revolves around seeking the solution to the PDE at hand in the space spanned by a set of q spa-
tial basis functions P ¼ spanfwjg

q
j¼1. Thus, the reduced-order solution ur is expressed as a linear combination of these basis

functions:
urðx; tÞ ¼ cðxÞ þ
Xq

j¼1

wjðxÞajðtÞ; ð40Þ
where c is an optional centering trajectory (shift mode). The time dependent coefficients aj in the combination are obtained
by solving the ODE produced by projecting the PDE onto the basis functions. Clearly, the efficiency of this approach crucially
depends on the ability of the reduced basis to represent the sought solutions. A truncated POD basis is a good candidate be-
cause the POD basis of dimension q is the best approximation of dimension q of the input collection data in terms of kinetic
energy representation. However, the best approximation result only holds for the set of parameter values defining the input
data. For shape parameters, the POD modes can even be undefined in some regions of some perturbed geometries. Thus, re-
duced-order solutions for other values of the parameters than the ones used to build the model may be poor approximations
of the full-order solutions. This is the main issue of this study and it will be addressed in what follows. For the moment, we
build reduced-order models for a basis of dimension q regardless of what are its components. Several different bases will be
considered in this study but for all of them we assume that each spatial function satisfies the homogeneous version of the
Dirichlet boundary conditions associated to the PDE.

We first build reduced-order models for the one-dimensional Burgers’ equation. Here, we do not introduce any centering
trajectory in the decomposition ur , i.e. cðxÞ ¼ 0 in (40). For the sake of simplicity, equations are written on the physical do-
main Xa. Hence, we seek ur 2 P such that 8wi 2 P:
Z

Xa

wi ur
;t þ urur

;x

h i
þ �wi ;xur

;x dXa ¼ 0: ð41Þ
For the Navier–Stokes equation, we consider the averaging operator which is the arithmetic average to define the shift mode
cðxÞ ¼ huhðx; tÞi ¼ 1

m

Pm
k¼1uhðx; tkÞ so that the POD will be applied to the data yh

i ðxÞ ¼ uhðx; tiÞ � cðxÞ. However, we assume that
each basis vector is divergence-free. Hence, taking w ¼ wi for i ¼ 1;2; . . . ; q in Eqs. (17) and (18), one obtains:
Z

Xa

q
@ur

@t
þ qður � rxÞur

� �
� wi dX ¼ �

Z
Xa

sðurÞ : rxwi dX: ð42Þ
Note that the incompressibility constraint (18) is automatically satisfied since the wj are solenoidal in the decomposition
(40), and its associated Lagrange multiplier, the pressure, is eliminated from (17).

Using the decomposition (40) in the set of q Eqs. (41) or (42) leads to a set of ODE for the time coefficients a ¼ ½a1; . . . ; aq�T :
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C _aðtÞ ¼ f ðaðtÞÞ 8t 2 ½0; T�; ð43Þ
where Cij ¼ ðwj;wiÞX which is the identity matrix for orthonormal bases. In the present study, these ODE are integrated in
time using either the implicit second-order Crank–Nicolson scheme or the explicit forth-order Runge–Kutta scheme. Finally,
initial conditions can be obtained from available DNS data. For an orthonormal basis, one has: aið0Þ ¼ ðyð0; �Þ;wið�ÞÞX for
i ¼ 1;2; . . . ; q.

3.4. Bases used in ROM for parameter dependent geometry

To produce reduced-order solutions at perturbed states for a ¼ a0 þ Da, we first considered the following bases:

	 Baseline POD basis: This is the traditional approach in ROM where the POD basis built from the data at the baseline
state a0 is used in (40) to subsequently produce reduced-order models at perturbed states a. These spatial modes are
only available on the baseline geometry but they can easily be mapped on the perturbed geometry using the trans-
formation defined in Sections 2.2.4 and 2.3.4. Note that in classical fully-Eulerian approaches used in DNS, no map-
ping is available.

	 Perturbed POD basis: the reduced-order model is constructed by using the POD modes extracted from the solution
data obtained by a DNS at the perturbed state a. This is a costly approach since each new reduced-order simulation
at a perturbed state requires DNS data at this state. Thus, it has little interest in practice but will be used in the
remainder of this study as a reference low-dimensional solution.

Following previous studies for value parameters in [10,11], we examine two different ideas for constructing improved
reduced-bases using the Lagrangian sensitivity of the POD modes at the baseline state:

	 Extrapolated basis: we treat each POD mode as a function of both space and parameter a : / ¼ /ðx;aÞ. A change Da
is reflected in the modes through a first-order expansion in the parameter space:
/ðx;aÞ ¼ /ðx;a0Þ þ Da
D/

Da
ðx;a0Þ þ OðDa2Þ: ð44Þ
The capability of this extrapolation clearly depends on whether or not the POD modes exhibit a nearly linear
dependency with respect to the parameter a. However, the dimension of the reduced basis is preserved and the
reduced approximation of the solution variables still expressed using (40). Once again, the spatial functions are
only available on the baseline geometry over which they have been computed but they are mapped on the per-
turbed geometry. This is a natural way to proceed given that the extrapolation is performed using Lagrangian
sensitivities.

	 Expanded basis: the sensitivities of the modes can be shown to span a different subspace than the POD
modes (see e.g. [10]). Thus, it is natural to expect that if the approximated solution is selected in the union of
the two subspaces generated by the POD modes and their sensitivities a broader class of solutions can be repre-
sented. It amounts to expand the baseline basis constituted of the first q eigenfunctions with their q sensitivities:
½/1; . . . ; /q; /a

1; . . . ; /a
q �. The underlying assumption behind this approach is that the subspace spanned by the mode

sensitivities is well-suited to address changes in solutions induced by a change in the parameter. However, the
dimension of the reduced basis has doubled and the reduced approximation of the flow variables is now expressed
from:
urðx; tÞ ¼ cðxÞ þ
Xq

j¼1

/jðxÞajðtÞ þ
X2q

j¼qþ1

/a
j�qðxÞajðtÞ: ð45Þ
It is worth noting that, once mapped on any perturbed physical domain, all the bases presented above can be used in (41)
and/or (42) as a set of trial functions since both the POD eigenfunctions and their sensitivities satisfied the homogeneous
Dirichlet boundary condition of the PDE at hand. However, in the case of the Navier–Stokes equations, the semi-analytical
mapping presented in Section 2.3.4 does not preserve incompressibility. That is, solenoidal spatial functions (as the baseline
POD modes and their sensitivities) will no longer be divergence-free once mapped on any other geometry than the one on
which they have been computed. There is no easy way to derive a mapping that would preserve this property. As a
consequence, (42) is no longer exactly valid when considering mapped modes because the pressure term cannot be
fully eliminated from (17). However, based on our experience, it has little influence in practice. This is because the departure
from the divergence-free condition is limited even for large parameter perturbations (note that due to the finite-element
method, unmapped modes are only solenoidal in the weak sense and not in a pointwise manner). In particular, the pressure
term in (17) remains small compare to the other ones and can be neglected. It is worth noting that these comments are based
on the authors’ own experience and we do not claim that they will be valid for all situations nor that a general result is
available.
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4. Numerical results for the 1D Burgers’ equation

4.1. DNS solution and sensitivity data

The computational domain is comprised of 201 nodes and the equations are integrated over the time interval [0,1] with
4800 integration steps for a viscous coefficient � ¼ 0:01. Fig. 4 shows the baseline solution and its Lagrangian sensitivity with
respect to a at three different times. The evolution of the solution in time is characterized by a falling wave over the left half
of the domain and a traveling wave over the right half of the domain [15]. To check the accuracy of the Lagrangian sensitivity
obtained by the sensitivity equation method (we refer to it as SEM), we compare it to the sensitivity computed by second-
order centered finite-difference (FD) of two solutions with step Da ¼ 0:001:
u
S

u

Du
Da
ðxða0Þ; a0Þ

����
FD

¼ uðxða0 þ DaÞ; a0 þ DaÞ � uðxða0 � DaÞ; a0 � DaÞ
2Da

: ð46Þ
Note that since we consider Lagrangian sensitivity we do not face the issue of non matching meshes as it is the case for Eule-
rian sensitivities [14]. Note also that the FD step Da has been chosen sufficiently small for the FD to be accurate and suffi-
ciently large for the difference between the two nearby flow solutions to be at least one order of magnitude larger than the
discretization error (this holds whenever FD approximations are used throughout this article). As can be seen in Fig. 4, the
agreement between the sensitivities calculated by the two approaches is very good. This validates the methodology used to
produce Lagrangian sensitivity data.

4.2. Shape sensitivity of the POD

From these solutions, m ¼ 60 snapshots of the finite-element solution and sensitivity were collected to assemble the
snapshot data matrix Y and its sensitivity Ya. The fluctuant kinetic energy captured by the POD modes is illustrated by plot-
ting the POD spectrum in logarithmic scale in Fig. 5 for the first 40 eigenvalues. Observe that there is a rapid decrease in the
energy distribution for all parameter values. Furthermore, as can be seen in Fig. 5(b) which shows the POD spectra obtained
from the decompositions of the solution data at some perturbed states (the dash-dotted line corresponds to the baseline), the
lower the value of a, the steeper the slope of the spectrum and thus the better the efficiency of the POD. This phenomenon
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Fig. 4. Solution and Lagrangian sensitivity of the Burgers’ equation.
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saturates for the largest parameter values. However, it means that a POD basis of fixed dimension q accounts for a more
important fraction of the energy in the data when a is small. Hence, it is expected that a q-dimensional POD-Galerkin models
will be more accurate when a is small. Fig. 5(a) also shows the sensitivity of the POD spectrum as computed from the solu-
tion and sensitivity data by (35) at the baseline state. We compare them to the sensitivity of the eigenvalues computed by
centered finite-difference (see Eq. (46)) using the decompositions of two perturbed datasets. As can be seen, the agreement
between the two approaches is very good. Note that the eigenvalue sensitivity decreases with the mode number in a similar
way as the eigenvalues do. This shows that the ordering of the eigenvalues will be preserved through changes in the shape
parameter. Note also that all the eigenvalue sensitivities are positive so that an increase in the parameter will bring an in-
crease in the eigenvalues, and conversely, as confirmed by the spectra in Fig. 5(b). Finally, the order of magnitude of the
eigenvalue sensitivities is similar to that of their corresponding eigenvalues but the relative, or normalized sensitivities
ðSkk

=kkÞ increases with the mode number k. This means that a change in the parameter will have more relative effect on
the higher mode eigenvalues than on the lower ones. Hence, a positive perturbation of the parameter will decrease the steep-
ness of the spectrum, and conversely. All these results show that the sensitivity information is very useful in predicting the
behavior of the flow and its characteristics with respect to a parameter at a given state.

Fig. 6 presents the first three POD modes and their sensitivities extracted at the baseline and Fig. 7 the next three com-
ponents. Again, in these figures the mode sensitivities are compared to those obtained by finite-difference showing a very
good agreement. This validates the methodology presented in Section 3.2 to calculate the POD mode sensitivities for shape
parameters. Note that there is a lot of structures in the POD basis functions over the left half of the domain [0,0.5] while the
right half [0.5,1] is primarily Fourier modes that become more and more oscillatory as the mode number increases. This re-
flects the fact that the main feature in the evolution of the solution over the right half of the domain is a traveling wave. Note
also that the mode sensitivities exhibit steep variations close to the left end and around the mid-section of the domain. There
are due to the discontinuities in the initial solution of the Burgers’ equation that are rapidly smeared out by the viscous term.

4.3. Reduced-order model predictions

We now examine the accuracy of the reduced-order models built using the bases presented in Section 3.4. Considering
�20% and �50% changes in the shape parameter, we examine the following cases:

1. Da ¼ þ0:2 : a ¼ 1:2 so that Xa ¼ ½0;1:2�,
2. Da ¼ �0:2 : a ¼ 0:8 so that Xa ¼ ½0;0:8�,
3. Da ¼ þ0:5 : a ¼ 0:5 so that Xa ¼ ½0;1:5�,
4. Da ¼ �0:5 : a ¼ 1:5 so that Xa ¼ ½0;0:5�.

For each case, we compare the low-order solutions ur to the full-order solution obtained by DNS at the perturbed state
uDNSja in Figs. 8 and 9. The error in ur is measured as:
errorðaÞ ¼ hkur � uDNSkXija ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Xa

ður � uDNSÞ2ja dXa

s
dt ð47Þ
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We first focus on the results for negative changes in the parameter shown in Fig. 8. For the vast majority of the cases, the
ROM based on the recomputed POD basis at the current state performs best as expected. As already stated, this is not a prac-
tical approach since it requires high computational cost to obtain DNS data at each and every perturbed state. However, the
error in this modeling increases for the largest basis dimensions. This is because the highest order modes contain no relevant
physical information but only random, highly oscillatory, numerical noise. Indeed, as can be seen in Fig. 5(b), for a ¼ 0:5 the
values of kq reach the machine floating point (double-)precision for q around 30. This means that the discrete data at this
state are exactly reproduce up the machine precision with the first 30–35 POD modes only. Thus, the last 25–30 modes
are randomly determined by non-significant digits in the data (note that this effect may have been delayed or mitigated if
a finer mesh had been used). These physically irrelevant and oscillatory modes, when included in the ROM bases, introduce
numerical imprecision in the matrices which subsequently spoil the global reduced-order solutions. Hence, these modes
should just be discarded.

However, the traditional approach in reduced-order modeling, which uses the baseline POD modes, performs poorly. As
expected, the larger the parameter perturbation, the larger the error in this modeling. The two approaches relying on the
mode sensitivities provide interesting alternatives that bring about significant improvements. For low-dimensional bases
and small parameter perturbations, the first-order extrapolation of the POD modes in the parameter space constitutes the
best idea. Indeed, for Da ¼ �0:2, the ROM from the extrapolated-basis and the perturbed basis perform similarly up to a
dimension of 10–12. This result indicates that the first POD modes still depend almost linearly on the shape parameter
for a 20% negative perturbation in the parameter. However, the saturation in the decrease of the error with the basis dimen-
sion occurs sooner when using the extrapolated-basis than for the recomputed basis. The further from the baseline, the soon-
er it happens. For a 50% negative perturbation in the parameter, the error in the model built from the extrapolated-basis is
much larger than what is obtained when using the perturbed POD but still smaller than for the baseline POD. However, solu-
tions from the ROMs built using the expanded bases are as accurate as solutions from the models built from the recomputed
POD at the perturbed states. This is even true for a 50% negative perturbation in the parameter. At this point this is important
to recall that the dimension of the expanded model is twice as large as the number q of (baseline, extrapolated or perturbed)
POD modes in the other approaches (see (45)) but only uses baseline data.

We now focus on the results for positive changes in the parameter shown in Fig. 9. As can be seen, the expanded approach
performance are slightly worse than previously but still provides a much better approximation than the baseline approach.
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However, on this side of the baseline state, the error in the extrapolated-basis models is larger than the one in the baseline
basis models. It shows that the extrapolation of the POD modes in the parameter space up to +20% or +50% is not a good
approximation of the POD modes at the perturbed states. Hence, the linear dependency of the POD modes with respect to
the parameter is only valid close to the baseline for positive parameter changes. It contrasts with previous conclusion drawn
for negative parameter changes. These results highlight the local nature of this approach that can be limited when the depen-
dency of the POD modes to a parameter is complex.
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It is worth noting that the low-index modes exhibit a more linear dependency than the high-index ones: (1) at a given
parameter perturbation, the first extrapolated modes are closer to their perturbed counterparts; (2) an almost linear depen-
dency is preserved further from the baseline for low-index modes than for the high-index ones. A general result cannot be
stated but this tendency has been observed in all the cases and parameters we have studied up to now, here and in previous
studies. Thus we report that the more energy is contained in a mode, the more likely it is to depend linearly on parameters.
This is an important result for the sensitivity-based reduced-order model since the most energetic modes are expected to
play the most important role in a dynamical system (though it might not always be true). This explains why the extrapolated
approach performs similarly to the perturbed approach for the lowest basis dimensions. However, here, the linear depen-
dency around the baseline state is much better for negative perturbations than for positive perturbations. This is the main
reason why the sensitivity-based approaches yields more accurate solutions for negative perturbations. Furthermore, as sta-
ted previously, positive perturbations lead to smoother spectra and thus decompositions for which a smaller fraction of the
energy is contained in the low-index modes that exhibit a better linear dependency.

Finally, the contrast between the results for positive and negative perturbations can also be partly explained from the
data themselves. They consist of the baseline solution snapshots collected in the time interval [0,1]. Once the data have been
decomposed, the POD modes reflect the information contained in the snapshots and a part of it may be useless to model
solutions at some perturbed states. Here, the solution is characterized by a traveling wave and a falling wave. The baseline
snapshots provide information on these waves that are relevant and needed to approximate solutions at any state. However,
after a sufficiently long-time, the traveling wave, which moves from the left to the right, reaches the right end of the domain
and is stopped by the zero Dirichlet boundary condition. Later, the front of the wave, associated to large velocity gradient, is
intensely damped out by the viscosity while a larger and larger fraction of the fluid is brought in this area to be subsequently
slowed down to rest. As can be seen in Fig. 4(c), this phenomenon has already started prior to the final integration time for
the baseline configuration and is represented in the baseline data and hence in the baseline POD modes and their sensitiv-
ities. Since the initial traveling wave speed is the same for all configurations, this phenomenon always occurs for negative
parameter perturbations that reduce the domain size. However, for sufficiently large positive parameter perturbations, the
traveling wave does not reach the left end of the perturbed domain in the time interval [0,1]. Indeed, for Xm ¼ 1:2 this pro-
cess has hardly started and simply does not occur for Xm ¼ 1:5. Hence, the spatial modes extracted at the baseline state con-
tain informations that are useless to model the perturbed solutions. It would have been better to collect the same number of
baseline snapshots over a shorter time interval thus providing more details about the relevant physical processes for these
perturbed solutions. Note that the worse scenario would have been to extract spatial modes from data containing no infor-
mation on this final process, say at Xm ¼ 1:5 over the time interval [0,1], to model solutions for which it takes place, say at
Xm ¼ 1 over the same time interval.

We now look at the error as calculated from Eq. (47) for a set of perturbations in the parameter ranging from +0.5 to �0.1.
Fig. 10(b), (d) and (f) present the errors in ur for bases of dimension 4, 10 and 20, respectively. We also present the error in
reduced-order solutions whose time coefficients have been obtained by projection on the DNS data at perturbed states. That
is, for a basis comprising q spatial function wi, we consider the reduced-order approximation
upðx; tÞ ¼
Xq

j¼1

wjðxÞa
p
j ðtÞ; ð48Þ
where the ap
i are obtained by solving the linear system:



Xm

er
ro
r

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.610-5

10-4

10-3

10-2

10-1

Proj. : perturbed POD
Proj. : baseline POD
Proj. : extrapolated POD
Proj. : expanded POD

Xm

er
ro
r

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.610-5

10-4

10-3

10-2

10-1

Proj. : perturbed POD
Proj. : baseline POD
Proj. : extrapolated POD
Proj. : expanded POD

Xm

er
ro
r

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.610-12

10-10

10-8

10-6

10-4

10-2

100

Proj. : perturbed POD
Proj. : baseline POD
Proj. : extrapolated POD
Proj. : expanded POD

Xm

er
ro
r

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.610-12

10-10

10-8

10-6

10-4

10-2

100

Proj. : perturbed POD
Proj. : baseline POD
Proj. : extrapolated POD
Proj. : expanded POD

Xm

er
ro
r

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.610-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

Proj. : perturbed POD
Proj. : baseline POD
Proj. : extrapolated POD
Proj. : expanded POD

Fig. 10. Error in reduced-order solutions as a function of a.

A. Hay et al. / Journal of Computational Physics 229 (2010) 1327–1352 1343



S
t

0

0

0

0

0

0

1344 A. Hay et al. / Journal of Computational Physics 229 (2010) 1327–1352
8i; j ¼ 1;2; . . . ; q
Z

Xa

uDNSjaðx; tÞwiðxÞ dXa ¼ ap
j ðtÞ

Z
Xa

wjðxÞwiðxÞ dXa:
The error in up indicates how good a given basis is to approximate the data at a given state while the error in ur indicates how
appropriate a given basis is to approximate the dynamic of the solution at a given state. While these errors are not totally
uncorrelated, they measure different properties of the bases.

Fig. 10(a), (c) and (e) present the errors in up for bases of dimension 4, 10 and 20, respectively. We first notice that the
smaller the domain size, the smaller the error associated to the recomputed POD at the perturbed states. Again, this is
due to the fact that the more reduced is the size of the domain, the more energy is contained in the first q POD modes. When
considering the perturbed POD, it is also clear that errors in up are always smaller than the ones in ur since it is less demand-
ing for a given basis to approximate some flow data than to predict the flow dynamics.

In a restricted area around the baseline, the extrapolated approach matches the perturbed approach results showing how
far in the parameter space the modes exhibit a linear dependency. The agreement between the two approaches holds on a
larger range of parameter values for q ¼ 10 than for q ¼ 26. This confirms that the low-index modes exhibit a more linear
dependency on the parameter than the high-index ones. When going further from the baseline, the disagreement between
the extrapolated-basis modeling and the perturbed-basis modeling increases. For positive parameter perturbations, this in-
crease soars so that the error in the extrapolated approach becomes larger than for the baseline approach. However, the ex-
panded approach leads to limited errors over the whole range of parameter values.
5. Numerical results for the 2D Navier–Stokes equations

5.1. Flow DNS data

To validate the present DNS results, we compare the Strouhal number St, the mean drag coefficient CD and the mean lift
coefficient CL obtained for several incidences to the numerical results of Sohankar et al. [36] in Fig. 11. For the purpose of this
comparison, and only in this section, all geometrical lengths are scaled with d, the projected width of the cylinder in the
streamwise direction d=D ¼ cos cþ sin c. For example, the Reynolds number is defined as Re ¼ qU0d=l and the Strouhal
number as St ¼ fsd=U0 where fs is the shedding frequency. As a consequence, the fluid viscosity is changed with the incidence
c to keep the Reynolds number at 100 for all simulations. This is in contrast with what has been presented in Section 2.3.4
where all geometrical lengths are scaled with D, the cylinder diameter. The use of d as a reference length is only valid for this
section to compare results with those of Sohankar et al.

As can be seen in Fig. 11, the agreement is quite good which validates the present numerical approach. The small discrep-
ancies with the results published in [36] are due to differences in numerical techniques and grid point distributions.
5.2. Sensitivity DNS data

Fig. 12 shows the baseline drag and lift sensitivities with time. As previously, one can compare in this figure the SEM sen-
sitivities to centered finite-difference approximations calculated for Da ¼ 10�5 rad to assess the accuracy of the sensitivity
data. Note that though a periodic state is reached for the flow, the sensitivity signals still grow in time and always will since
as time advances the departure of any perturbed flow from the baseline flow becomes larger and larger.
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5.3. POD modes and their Lagrangian sensitivities

During one vortex shedding cycle of period T; m ¼ 60 snapshots of the FE solutions (flow and sensitivity) were collected
to build the snapshot data matrix and its sensitivity. The fluctuating kinetic energy captured by the POD modes is illustrated
by plotting the POD spectra on a logarithmic scale in Fig. 13 for three different configurations. There is a rapid decrease in the
energy distribution so that the effectiveness of the POD is rapidly large. Indeed, the first six POD modes account for more
than 99% of the flow energy for all configurations. Note also that the square cylinder incidence has little influence on the
POD spectrum which remains qualitatively the same for all parameter values. However, the change in the spectrum is more
important for negative parameter perturbations than for positive ones. The lower the value of a, the sharper the spectrum.

Fig. 14(a) shows the values of the Lagrangian sensitivity of the POD eigenvalues. For verification purposes, we compare
them to the sensitivity computed by finite-differences again for Da ¼ 10�5 rad. As can be seen, the agreement between the
two approaches is very good. Except for the fifth and sixth modes, the eigenvalue sensitivity (roughly) decreases with the
mode number in a similar way as the eigenvalues do. This shows that the ranking of the eigenvalues will be preserved
through changes in the parameter. Only the rate of the energy decay will be affected. Note that all these results are confirmed
by the spectra shown in Fig. 14(a) showing how sensitivity can be used to characterize flow solutions in the parameter space.
To assess the accuracy of the POD spatial mode sensitivities, Fig. 14(b) compares the norm of the first 30 POD mode sensi-
tivities with their FD counterparts. We observe that the agreement is very good.

Fig. 15 shows the contours of the streamwise and normal components of the first four spatial POD vectors at the baseline.
In this figure, blue colors refer to negative values while red colors refer to positive values of contours. Clearly, the POD modes
are almost even or odd functions in y as it is the case for the symmetric configuration at no incidence ða ¼ �22:5�Þ as re-
ported in the literature (see e.g. [5,8,9]). Here, given that the baseline configuration is asymmetric, this is only approximately
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true. However, the POD modes can be grouped by pairs, as for symmetric configurations, since this property comes from the
temporal periodicity of the flows, which here is preserved through any parameter change, and makes the temporal eigen-
functions Fourier modes (see [10] for details). This is also the reason why the eigenvalues decay pairwise in Fig. 13.

A qualitative picture of the structure of the POD mode sensitivities is given in Fig. 16 where contours of the streamwise
and normal components of the first four POD mode sensitivities are presented. Clearly, they contain different structures than
the original POD modes. To make this point clear, components of the POD modes have been removed from the sensitivities
shown in Fig. 16 by orthogonalizing (using a QR decomposition) the set of vectors comprised of the POD modes and their
sensitivities. The POD eigenfunctions are not modified by this operation since they already form a set of orthonormal vectors.
However, the POD modes and their sensitivities have been made maximally linearly independent by extracting an orthonor-
mal basis from these vectors. The resulting orthogonalized sensitivities shown in Fig. 16 are linearly independent of the POD
basis components and thus span a different subspace. Note also that their influence is not only significant in the vicinity of
the cylinder but also in its wake.
5.4. Reduced-order approximations

This section reports the performance of reduced-order approximations built from the bases described in Section 3.4 for
the short term dynamic of flows. To focus on the influence of the basis used in the reduced-order modeling, all ROM simu-
lations are initialized using the DNS data at the considered state and use the appropriate centering (note, however, that in
the context of the extrapolated idea, the mean flow can be extrapolated using the sensitivity of the mean flow which is easily
calculated from the flow sensitivities at the baseline; and for the expanded approach, the low-dimensional basis can be ex-
panded by the sensitivity of the mean flow to take into account the mean flow modification through parameter changes; the
interested reader is referred to [11] for details.) As in Section 4.3, we compare the low-dimensional solutions ur to the full-
order solution obtained by a DNS at the perturbed state uDNSja by measuring the error in ur from (47). We also look at the
error in up where the time coefficients are obtained by projection on the DNS data (see Section 4.3). Fig. 17 reports errors for
bases of dimension 6 and 12 in up (Fig. 17(a) and (c), respectively) and ur (Fig. 17(b) and (d), respectively). As can be seen in
Fig. 17(a) and (c), the two sensitivity-based bases provide a better approximation of the data (error in up) than the baseline
basis. This is true for all parameter perturbations but the best improvements are obtained around the baseline as expected.
At the baseline, all bases perform the same since they all contain at least the first q POD modes at this state. The baseline,
perturbed and extrapolated bases are all the same and only the expanded basis is different due to the additional POD mode
sensitivities. This result shows that the baseline sensitivity modes do not represent a significant part of the energy in the
baseline data and that the POD modes alone provide an efficient low-dimensional basis for the baseline flow. However, when
one moves away from the baseline state, the baseline POD basis loses its ability to approximate flow solutions so that the
baseline approach becomes inaccurate. At these points, the mode sensitivities provide relevant directions to account for per-
turbations in solutions due to parameter changes. Close to the baseline, this additional information is enough to yield rep-
resentation errors as low as for the perturbed basis. When one goes further from the baseline in the parameter space this is
no longer true. This means that for large parameter perturbations, the first-order POD mode sensitivities cannot account for
all changes in the solutions. However, at these states, the extrapolated and expanded bases provide better approximations
than the baseline basis.

We now look at errors in low-order approximations of flows obtained from ROM predictions in Fig. 17(b) and (d). As can
be seen, similar conclusions hold for the baseline, extrapolated and perturbed approaches. It shows that these ROM capture
the dynamics of their basis components fairly well. However, errors in the expanded basis model exhibit a clearly different
behavior. The most surprising result occurs at the baseline state. Indeed, the expanded basis contains the first q baseline POD
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is illustrated in Fig. 18 where the time evolution of modal coefficients a1 and a13 is plotted over a hundred baseline flow peri-
ods. As can be seen in (45), a1 is associated to the first baseline POD mode /1 of the data decomposition at a ¼ 0 while a13 is
associated to the first baseline sensitivity component /a

1 for q ¼ 12. During the initial stage of the simulation, a13 is small as
expected but grows rapidly with time. This incorrect gain of energy of these basis components will in turn incur inaccurate
predictions of the time evolution of a1. Hence, though the expanded approach provides a better basis in which to approxi-
mate solutions over a range of parameter values around the baseline, resulting ROMs fail to predict the short-term dynamics
of these flows. This result is a severe drawback for the expanded approach which up to now had provided the best and most
robust approach to compute reduced-order approximations of flows over a range of parameter values.

We are currently investigating the reasons of this failure. However, poor behaviors of Galerkin models have already been
reported in the literature. Foias et al. [43] investigated the existence of multiple spurious steady states in the Galerkin expan-
sion of the Kuramoto–Sivashinsky equation. For a similar equation, [44] also found spurious states in their POD model that
captured 99.99% of the system’s energy. They observed that the predicted solution is not the right limit cycle. Noack et al. [7]
present a 3-dimensional system of ODE for which a Galerkin reduced-order model is built using an exactly valid decompo-
sition of the full-order solution. They show that the resulting ROM is structurally unstable (unlike the full-order system) and
has incorrect attractors. A similar result has also been obtained in [45] for another dynamical system for which the Galerkin
method gives rise to an unstable attractor. Anttonen et al. [16] report unstable models built using a (blended) POD basis ex-
tracted flow snapshots at several different parameter values.

In the reduced-order modeling of vortex shedding, the Galerkin projection introduces spurious limit cycles which may
cause the solution to drift to a nonphysical state. However, it is typically observed in the long-time integration of the
low-dimensional system where the solution can drift to some erroneous state even if it is initialized with the correct periodic
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state. This instability is associated with the presence of multiple spurious limit cycles. In the POD model of the flow past a
cylinder, Sirisup and Karniadakis [8] showed that the onset of divergence from the correct limit cycle depends on the number
of modes in the Galerkin expansion, the Reynolds number, and the flow geometry. They used a spectral vanishing viscosity
(SVV) method [46], which adds a small amount of mode-dependent dissipation satisfying the entropy condition while
retaining the spectral accuracy. The SVV is typically applied to the higher-order modes and the parameters for the SVV model
are found by an empirical method and a bifurcation analysis. However, their exact values are not known a priori and depend
on the flow geometry and the number of POD modes. For the similar flow past a cylinder, Akhtar et al. [47] also observed that
the solution drifts to a nonphysical state after approximately 400 shedding cycles. They proposed a shooting method [48] to
adjust the initial conditions and the time period to home on the physical limit cycle.

It is important to note that we did not encounter any instability behavior in the long-time integration of reduced-order
models built from the baseline, perturbed or extrapolated approaches. However, we suspect that the addition of sensitivity
modes and corresponding Galerkin projection onto these modes may have produced such spurious limit cycles. Deviation to
such an erroneous limit cycle can be observed in Fig. 18. These examples emphasize that even when a reduced-order approx-
imation can account for a large fraction of the solution energy (as can easily be obtained given the optimality of the POD),
there is no guarantee that the resulting dynamical system will preserve the original system properties or exhibit proper
behaviors. Finally, it is worth mentioning that the unphysical behaviors of the expanded reduced-order models are not
linked to the fact that the POD modes and their sensitivities are not exactly solenoidal at perturbed states (see Section
3.4). Indeed, these poor behaviors of the expanded approach are also observed at the baseline where both the POD modes
and their sensitivities are divergence-free. Conversely, the extrapolated approach does not exhibit any such poor behavior
regardless of the perturbation in the parameter even though the extrapolated modes are not solenoidal at perturbed states.
6. Conclusions

The focus of this paper was on reduced-order approximations of flows for problems with parameter dependent geome-
tries. Shape sensitivity analysis is a powerful tool to predict the influence of parameter changes on problem solutions that is
widely used in design and optimization studies. Here, it has been applied on the proper orthogonal decomposition (POD) to
yield Lagrangian POD mode sensitivities with respect to parameters. These global spatial functions express how POD modes
/ T a130 2 0 4 0 6 0 8 0 1 0 0 -1- 0 7 5 00 7 5 11 7 5baseline.
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are linearly altered by modifications in the problem geometry through changes in parameter values. They are the key ele-
ment in the study to build reduced-order approximations for problems with parameter dependent geometries.

Shape sensitivity analysis of the POD consists in the differentiation of the eigenvalue problem to which the POD functions
are solutions. The complete methodology has been presented in details. As expected, it requires the sensitivity of the flow
data that is decomposed to yield the POD modes. While it can easily be obtained by finite-differences of two nearby flow
datasets, this is a costly approach since it makes the mode sensitivities at least as computationally expensive as the POD
modes themselves. To mitigate this issue, the sensitivity equation method (SEM) has been used to generate flow sensitivity
data that are then obtained for a fraction of the cost of corresponding flow data (largely because sensitivity equations are
always linear as opposed to the Navier–Stokes equations). Note also that, as already reported in the literature, there is a
number of additional difficulties and limitations associated with the use of finite-differences in shape sensitivity analysis
from which the SEM does not suffer.

The solution to the differentiated eigenvalue problem provides both the sensitivity of the eigenvalues and the POD spatial
and temporal modes. This information is valuable because the POD is not only used for model building purposes but also for
flow characterization. As an example, for the flows over square cylinders at incidence, the sensitivity of the eigenvalues with
respect to the angular orientation of the cylinder are all positive indicating that an increase in this parameter will lead to an
increase of the total kinetic energy of the flow.

In the context of reduced-order modeling, the POD mode sensitivities have been used in the basis selection step to enlarge
the set of solutions than can be accurately represented in the parameter space. To this end, we have examined two different
approaches. This first one extrapolates the POD modes in the parameter space to the corresponding state to be modeled. It
relies on the assumption that these eigenfunctions have a linear dependency on the parameters that can only be validated
locally. The second one expands the low-dimensional POD basis by adding the sensitivity of the original components. The
underlying idea behind this approach is that the POD mode sensitivities span a different subspace than the one generated
by the POD eigenfunctions and point in relevant directions when considering parameter changes. This property has been
demonstrated in previous studies by the authors [11].

The improvements yielded by these new bases in terms of reduced-order flow approximations have been tested for the
one-dimensional Burgers’ equation and the two-dimensional Navier–Stokes equations. In both cases, the sensitivity-based
bases provide a more reliable and robust alternative to using only the baseline POD modes to accurately approximate solu-
tions for a range of parameter values and thus a set of different geometries. Results are more impressive for the simpler case
of the one-dimensional Burgers’ equation. Indeed, even for large parameter changes, the expanded basis built at the baseline
can potentially be as adequate as the bases obtained by decompositions of flow data at perturbed states. All in all, the ex-
panded approach usually yields a better and more robust alternative than the extrapolated approach but essentially doubles
the basis dimension.

For the Burger’ equation problem, all ROM built using the sensitivity-based bases have successfully predicted the correct
dynamics of all modal components in the low-dimensional approximation at hand. Hence, the improvements observed pre-
viously are inherited by the ROM solutions and thus more robust reduced-order models are obtained. However, a serious
limitation has been uncovered when considering two-dimensional flows over cylinders at incidence. For this case, the ex-
panded basis has led to ROM having incorrect behaviors (note that the extrapolated approach is not subjected to this prob-
lem). The most striking example is observed at the baseline where energy is transferred from the POD modes to their
sensitivities though the latter components should not be activated at all. Although this is in contrast with previous studies
on several cases, it clearly stresses that even when having a low-dimensional basis accounting for a huge fraction of the solu-
tion energy (the expanded basis with q ¼ 12 captures more than 99.99% of the baseline flow energy), there is no guarantee
that the corresponding reduced-order dynamical system is a good approximation of the full-order system. In particular, it
may have different attractors so that the ROM solutions have incorrect limit cycles. Here, the expanded ROM cannot cor-
rectly approximate the short-term dynamics of the full-order solution. Future research will aim at understanding this failure
and try to provide a remedy to it. Similar problems in reduced-order modeling has already be reported in the literature and a
number of approaches have been proposed to improve or correct POD model behaviors. As an example, the procedures pro-
posed by Couplet et al. [9] which rely on minimization problems to produce improved ROM by calibrating their polynomial
coefficients may be used. Alternatively, a shooting method [48] may help to prevent the reduced-order system to drift to an
unphysical limit cycle.
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